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The unity of all science consists alone in its method,
not in its material

Karl Pearson (1892)



The reasoning robot
Jaynes 2003, The logic of science

The robot shall reason about

Aristotelian propositions:

a,b, c . . .

What are the rules of reasoning?



Logic: Propositional calculus

All logic functions can be represented by negation and conjunction:

Negation: ā

True if a is false

Conjunction: c = ab

True i� a and b are true

For convenience, we also de�ne the disjunction

Disjunction: d = a + b (= ab)

Unfortunately, certainty is rare. What then?



Cox's theorem

Let a and b be two propositions and

b|a

be a measure1 of reasonable credibility in b given a is true.

Desideratum: b|a is represented by a real number.

xxxxxxxxxxxxx Greater credibility → larger number

Immediate consequence: Comparability

How does this measure transform?

Cox 1946; Jaynes 2003 (The logic of science); Van Horne 2003
1Cox calls b|a the likelihood



Cox's theorem

Cox's �rst assumption:

c · b|a = F (b|a, c |b · a)

with continuous, strictly monotonic function F .

Cox's example

b: A sprinter can run from A to B

c : The sprinter can run A�B�A

a: Landscape, course, etc.



Cox's theorem

The solution reads

w(c · b|a) = w(b|a)w(c |b · a)

with continuous, monotonic function w .

Letting c = b, we obtain

w(b · b|a) = w(b|a)w(b|b · a)

w(b|a) = w(b|a)w(b|b · a)

w(b|b · a) = 1 certainty



Cox's theorem

Second assumption:

w(∼ b|a) = S(w(b|a))

with some function S .

S(x) = (1− xm)1/m and 0 < m <∞

Solution

wm(b|a) + wm(∼ b|a) = 1



Cox's theorem

The sum and product rule (to the mth) power:

1 = wm(b|a) + wm(∼ b|a)

wm(c · b|a) = wm(b|a)wm(c |b · a)

With P(x) = wm(x) we obtain the rules of probability theory

1 = P(b|a) + P(∼ b|a) ∼ negation

P(c · b|a) = P(b|a)P(c |b · a) ∼ conjunction

Theories in accordance with the assumptions are isomorphic to
probability theory.



Bayes theorem
Data, model, and Bayes' theorem

P(a|bc) =
P(a|c)P(b|ac)

P(b|c)

Common situation

• Data D

• Model f (~θ) depending on parameters ~θ = (θ1, θ2, . . .)

• Other available information, I

P(~θ|D, f I ) =
P(~θ|f I )P(D|~θ, f I )

P(D|f I )
Prior, likelihood, and posterior (inverse probability)



Setting up a problem

Source region, known position, Poisson process (P)
Known BG count rate: λb, but unknown source count rate λs

ns counts in source region. What about λs?



Parameter estimation

Use Bayes' theorem IP = {P, λb, location, . . .}:

P(λs |ns , IP) =
P(λs |IP)P(ns |λs , IP)

P(ns |IP)

The likelihood

P(ns |λs , IP) =
ns∑
i=0

P(i |λs)P(ns − i |λb)

What about the prior?

P(λs |IP) = C/λs with C > 0

Improper! De�ned up to a constant (typical for ignorance prior)



Parameter estimation

The normalization

P(ns |IP) =

∫ ∞

0

P(ns , λs |IP)dλs =

∫ ∞

0

P(λs |IP)P(ns |λs , IP)dλs

P(λs |ns , IP) =
C/λs

∑ns
i=0
P(i |λs)P(ns − i |λb)∫∞

0
C/λs

∑ns
i=0
P(i |λs)P(ns − i |λb)dλs



Hypothesis testing

H0 : λs ≤ λ0 and H1 : λs > λ0

Calculate probability for (not against) the hypotheses:

P(H0|ns , IP) =
P(H0|IP)P(ns |H0, IP)

P(ns |IP)

P(H1|ns , IP) =
P(H1|IP)P(ns |H1, IP)

P(ns |IP)

P(H0|ns , IP)

P(H1|ns , IP)
=

P(H0|IP)

P(H1|IP)
× P(ns |H0, IP)

P(ns |H1, IP)

Posterior odds = Prior odds × Bayes factor



Hypothesis testing

H0 : λs ≤ λ0 and H1 : λs > λ0

Assume: λ0 = 1 and prior odds = 1/2 : 1/2

P(H0|ns , IP)

P(H1|ns , IP)
= 0.69(ns = 4) , 0.19(ns = 7) , 0.02(ns = 10)

But, is there evidence for λs > 0 at all?



Point hypotheses testing

H0 : λs = 0 and H1 : λs > 0

lim
λ0→0

P(H0|ns , IP)

P(H1|ns , IP)
= 0 ???

On IP , the probability is zero.

What about a classical test of signi�cance?



A classical test of signi�cance

H0 : λs = 0 (to be nulli�ed)

Test statistic (T ): Number of photons in source region.

Determine p(robability)-value: p = P(T ≥ ns |H0, λb = 3)

Reject H0 if p is su�ciently small (e.g., 0.05)
but P(D|H0) 6= P(H0|D)



A Bayesian point hypotheses test

Introduce new, sharply peaked prior:

π0 on λs = 0 and (1− π0) distributed over λs > 0

→ Two models (with and without λs)

Sketch of the prior



Point hypotheses testing

Calculate probability of H0:

P(H0|ns , Iπ) =
P(H0|Iπ)P(ns |H0, Iπ)

P(ns |Iπ)

P(H0|ns , Iπ) =
π0P(ns |λb, Iπ)

π0P(ns |λb, Iπ) + (1− π0)
∫
P(λs |Iπ)P(ns |λs , Iπ)dλs

P(λs |Iπ) = C/λs ?

We need a proper (normalizable) prior



Point hypotheses testing

Je�reys argues for a Cauchy distribution:

P(λs |Iπ) =
2

π(γ − λ2s )

How do we choose γ? I argue for γ =
√
λb (scale of the problem)

p-value vs. probability of H0

at ns = 7: p = 0.03 but P(H0|ns , Iπ) = 0.29 (!)



Summary

− Cox's theorem

− Parameter estimation

− Hypothesis testing

− null hypothesis testing


