Bayesian hypothesis testing Stefan Czesla

The unity of all science consists alone in its method, not in its material

Karl Pearson (1892)

The reasoning robot

 Jaynes 2003, The logic of scienceThe robot shall reason about Aristotelian propositions:

$$
a, b, c \ldots
$$

What are the rules of reasoning?

Logic: Propositional calculus

All logic functions can be represented by negation and conjunction:

Negation: \bar{a}
True if \boldsymbol{a} is false

Conjunction: $\boldsymbol{c}=\boldsymbol{a b}$
True iff \boldsymbol{a} and \boldsymbol{b} are true

For convenience, we also define the disjunction
Disjunction: $\boldsymbol{d}=\boldsymbol{a}+\boldsymbol{b} \quad(=\overline{\bar{a} \bar{b}})$

Unfortunately, certainty is rare. What then?

Cox's theorem

Let \boldsymbol{a} and \boldsymbol{b} be two propositions and

$$
\boldsymbol{b} \mid \boldsymbol{a}
$$

be a measure ${ }^{1}$ of reasonable credibility in \boldsymbol{b} given \boldsymbol{a} is true.

Desideratum: $\boldsymbol{b} \mid \boldsymbol{a}$ is represented by a real number. Greater credibility \rightarrow larger number

Immediate consequence: Comparability
How does this measure transform?

Cox 1946; Jaynes 2003 (The logic of science); Van Horne 2003
${ }^{1}$ Cox calls $\boldsymbol{b} \mid \boldsymbol{a}$ the likelihood

Cox's theorem

Cox's first assumption:

$$
\boldsymbol{c} \cdot \boldsymbol{b} \mid \boldsymbol{a}=F(\boldsymbol{b}|\boldsymbol{a}, \boldsymbol{c}| \boldsymbol{b} \cdot \boldsymbol{a})
$$

with continuous, strictly monotonic function F.

Cox's example
b: A sprinter can run from A to B c: The sprinter can run $\mathrm{A}-\mathrm{B}-\mathrm{A}$ a: Landscape, course, etc.

Cox's theorem

The solution reads

$$
w(\boldsymbol{c} \cdot \boldsymbol{b} \mid \boldsymbol{a})=w(\boldsymbol{b} \mid \boldsymbol{a}) w(\boldsymbol{c} \mid \boldsymbol{b} \cdot \boldsymbol{a})
$$

with continuous, monotonic function w.
Letting $\boldsymbol{c}=\boldsymbol{b}$, we obtain

$$
\begin{aligned}
w(\boldsymbol{b} \cdot \boldsymbol{b} \mid \boldsymbol{a}) & =w(\boldsymbol{b} \mid \boldsymbol{a}) w(\boldsymbol{b} \mid \boldsymbol{b} \cdot \boldsymbol{a}) \\
w(\boldsymbol{b} \mid \boldsymbol{a}) & =w(\boldsymbol{b} \mid \boldsymbol{a}) w(\boldsymbol{b} \mid \boldsymbol{b} \cdot \boldsymbol{a}) \\
w(\boldsymbol{b} \mid \boldsymbol{b} \cdot \boldsymbol{a}) & =1 \text { certainty }
\end{aligned}
$$

Cox's theorem

Second assumption:

$$
w(\sim \boldsymbol{b} \mid \boldsymbol{a})=S(w(\boldsymbol{b} \mid \boldsymbol{a}))
$$

with some function S.

$$
S(x)=\left(1-x^{m}\right)^{1 / m} \quad \text { and } \quad 0<m<\infty
$$

Solution

$$
w^{m}(\boldsymbol{b} \mid \boldsymbol{a})+w^{m}(\sim \boldsymbol{b} \mid \boldsymbol{a})=1
$$

Cox's theorem

The sum and product rule (to the $\mathrm{m}^{\text {th }}$) power:

$$
\begin{aligned}
1 & =w^{m}(\boldsymbol{b} \mid \boldsymbol{a})+w^{m}(\sim \boldsymbol{b} \mid \boldsymbol{a}) \\
w^{m}(\boldsymbol{c} \cdot \boldsymbol{b} \mid \boldsymbol{a}) & =w^{m}(\boldsymbol{b} \mid \boldsymbol{a}) w^{m}(\boldsymbol{c} \mid \boldsymbol{b} \cdot \boldsymbol{a})
\end{aligned}
$$

With $P(x)=w^{m}(x)$ we obtain the rules of probability theory

$$
\begin{array}{rlrl}
1 & =P(\boldsymbol{b} \mid \boldsymbol{a})+P(\sim \boldsymbol{b} \mid \boldsymbol{a}) & \sim \text { negation } \\
P(\boldsymbol{c} \cdot \boldsymbol{b} \mid \boldsymbol{a}) & =P(\boldsymbol{b} \mid \boldsymbol{a}) P(\boldsymbol{c} \mid \boldsymbol{b} \cdot \boldsymbol{a}) & & \sim \text { conjunction }
\end{array}
$$

Theories in accordance with the assumptions are isomorphic to probability theory.

Bayes theorem

Data, model, and Bayes' theorem

$$
P(\boldsymbol{a} \mid \boldsymbol{b} \boldsymbol{c})=\frac{P(\boldsymbol{a} \mid \boldsymbol{c}) P(\boldsymbol{b} \mid \boldsymbol{a c})}{P(\boldsymbol{b} \mid \boldsymbol{c})}
$$

Common situation

- Data D
- Model $f(\vec{\theta})$ depending on parameters $\vec{\theta}=\left(\theta_{1}, \theta_{2}, \ldots\right)$
- Other available information, I

$$
P(\vec{\theta} \mid D, f I)=\frac{P(\vec{\theta} \mid f I) P(D \mid \vec{\theta}, f I)}{P(D \mid f I)}
$$

Prior, likelihood, and posterior (inverse probability)

Setting up a problem

Source region, known position, Poisson process (\mathcal{P}) Known BG count rate: λ_{b}, but unknown source count rate λ_{s}

n_{s} counts in source region. What about λ_{s} ?

Parameter estimation

Use Bayes' theorem $I_{\mathcal{P}}=\left\{\mathcal{P}, \lambda_{b}\right.$, location, $\left.\ldots\right\}$:

$$
P\left(\lambda_{s} \mid n_{s}, I_{\mathcal{P}}\right)=\frac{P\left(\lambda_{s} \mid \mathcal{I}_{\mathcal{P}}\right) P\left(n_{s} \mid \lambda_{s}, I_{\mathcal{P}}\right)}{P\left(n_{s} \mid I_{\mathcal{P}}\right)}
$$

The likelihood

$$
P\left(n_{s} \mid \lambda_{s}, I_{\mathcal{P}}\right)=\sum_{i=0}^{n_{s}} \mathcal{P}\left(i \mid \lambda_{s}\right) \mathcal{P}\left(n_{s}-i \mid \lambda_{b}\right)
$$

What about the prior?

$$
P\left(\lambda_{s} \mid I_{\mathcal{P}}\right)=\mathcal{C} / \lambda_{s} \text { with } \mathcal{C}>0
$$

Improper! Defined up to a constant (typical for ignorance prior)

Parameter estimation

The normalization

$$
P\left(n_{s} \mid I_{\mathcal{P}}\right)=\int_{0}^{\infty} P\left(n_{s}, \lambda_{s} \mid I_{\mathcal{P}}\right) d \lambda_{s}=\int_{0}^{\infty} P\left(\lambda_{s} \mid I_{\mathcal{P}}\right) P\left(n_{s} \mid \lambda_{s}, I_{\mathcal{P}}\right) d \lambda_{s}
$$

$$
P\left(\lambda_{s} \mid n_{s}, \mathcal{I}_{\mathcal{P}}\right)=\frac{\mathcal{C} / \lambda_{s} \sum_{i=0}^{n_{s}} \mathcal{P}\left(i \mid \lambda_{s}\right) \mathcal{P}\left(n_{s}-i \mid \lambda_{b}\right)}{\int_{0}^{\infty} \mathcal{C} / \lambda_{s} \sum_{i=0}^{n_{s}} \mathcal{P}\left(i \mid \lambda_{s}\right) \mathcal{P}\left(n_{s}-i \mid \lambda_{b}\right) d \lambda_{s}}
$$

Hypothesis testing

$\mathrm{H}_{0}: \lambda_{\mathrm{s}} \leq \lambda_{0} \quad$ and $\quad \mathrm{H}_{1}: \lambda_{\mathrm{s}}>\lambda_{0}$
Calculate probability for (not against) the hypotheses:

$$
\begin{aligned}
P\left(H_{0} \mid n_{s}, I_{\mathcal{P}}\right) & =\frac{P\left(H_{0} \mid I_{\mathcal{P}}\right) P\left(n_{s} \mid H_{0}, I_{\mathcal{P}}\right)}{P\left(n_{s} \mid I_{\mathcal{P}}\right)} \\
P\left(H_{1} \mid n_{s}, I_{\mathcal{P}}\right) & =\frac{P\left(H_{1} \mid I_{\mathcal{P}}\right) P\left(n_{s} \mid H_{1}, I_{\mathcal{P}}\right)}{P\left(n_{s} \mid I_{\mathcal{P}}\right)} \\
\frac{P\left(H_{0} \mid n_{s}, I_{\mathcal{P}}\right)}{P\left(H_{1} \mid n_{s}, I_{\mathcal{P}}\right)} & =\frac{P\left(H_{0} \mid I_{\mathcal{P}}\right)}{P\left(H_{1} \mid I_{\mathcal{P}}\right)} \times \frac{P\left(n_{s} \mid H_{0}, I_{\mathcal{P}}\right)}{P\left(n_{s} \mid H_{1}, I_{\mathcal{P}}\right)} \\
\text { Posterior odds } & =\text { Prior odds } \times \text { Bayes factor }
\end{aligned}
$$

Hypothesis testing

$\mathrm{H}_{0}: \lambda_{\mathrm{s}} \leq \lambda_{0} \quad$ and $\quad \mathrm{H}_{1}: \lambda_{\mathrm{s}}>\lambda_{0}$
Assume: $\lambda_{0}=1$ and prior odds $=1 / 2: 1 / 2$

But, is there evidence for $\lambda_{s}>0$ at all?

Point hypotheses testing

$$
\begin{aligned}
\mathrm{H}_{0}: \lambda_{\mathrm{s}}=0 \quad \text { and } \quad & \mathrm{H}_{1}: \lambda_{\mathrm{s}}>0 \\
& \lim _{\lambda_{0} \rightarrow 0} \frac{P\left(H_{0} \mid n_{s}, I_{\mathcal{P}}\right)}{P\left(H_{1} \mid n_{s}, /_{\mathcal{P}}\right)}=0 \quad ? ? ?
\end{aligned}
$$

On $\boldsymbol{I}_{\mathcal{P}}$, the probability is zero.

What about a classical test of significance?

A classical test of significance

$\mathrm{H}_{0}: \lambda_{\mathrm{s}}=0 \quad$ (to be nullified)
Test statistic (T) : Number of photons in source region.
Determine p (robability)-value: $p=P\left(T \geq n_{s} \mid H_{0}, \lambda_{b}=3\right)$

Reject H_{0} if p is sufficiently small (e.g., 0.05) but $P\left(D \mid H_{0}\right) \neq P\left(H_{0} \mid D\right)$

A Bayesian point hypotheses test

Introduce new, sharply peaked prior:
π_{0} on $\lambda_{s}=0$ and ($1-\pi_{0}$) distributed over $\lambda_{s}>0$
\rightarrow Two models (with and without λ_{s})

Sketch of the prior

Point hypotheses testing

Calculate probability of H_{0} :

$$
\begin{gathered}
P\left(H_{0} \mid n_{s}, I_{\pi}\right)=\frac{P\left(H_{0} \mid I_{\pi}\right) P\left(n_{s} \mid H_{0}, I_{\pi}\right)}{P\left(n_{s} \mid I_{\pi}\right)} \\
P\left(H_{0} \mid n_{s}, I_{\pi}\right)=\frac{\pi_{0} \mathcal{P}\left(n_{s} \mid \lambda_{b}, I_{\pi}\right)}{\pi_{0} \mathcal{P}\left(n_{s} \mid \lambda_{b}, I_{\pi}\right)+\left(1-\pi_{0}\right) \int P\left(\lambda_{s} \mid I_{\pi}\right) P\left(n_{s} \mid \lambda_{s}, I_{\pi}\right) d \lambda_{s}} \\
P\left(\lambda_{s} \mid I_{\pi}\right)=\mathcal{C} / \lambda_{s} \quad ?
\end{gathered}
$$

We need a proper (normalizable) prior

Point hypotheses testing

Jeffreys argues for a Cauchy distribution:

$$
P\left(\lambda_{s} \mid I_{\pi}\right)=\frac{2}{\pi\left(\gamma-\lambda_{s}^{2}\right)}
$$

How do we choose γ ? I argue for $\gamma=\sqrt{\lambda_{b}}$ (scale of the problem)

p-value vs. probability of H_{0} at $n_{s}=7: p=0.03$ but $P\left(H_{0} \mid n_{s}, I_{\pi}\right)=0.29(!)$

Summary

- Cox's theorem
- Parameter estimation
- Hypothesis testing
- null hypothesis testing

